Начальные этапы дистракционного остеогенеза

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России, Москва, РФ

В статье проведен анализ данных литературы, посвященных исследованию дистракционного остеогенеза. Согласно современным представлениям о механизмах репаративной регенерации при дистракционном остеосинтезе основными факторами, запускающими репаративную регенерацию, являются искусственно создаваемый тканевой «дефицит» и воздействие напряжения растяжения на сосудистую сеть, сформировавшуюся в латентный период. Последовательное локальное воздействие факторов роста и других пептидных регуляторов обеспечивает достаточный уровень репаративного остеогенеза в течение всего периода дистракции. Объем и качество новообразованной костной ткани зависят от пространственно-временных характеристик дистракции и резервных возможностей конкретного индивидуума.

К л ю ч е в ы е   с л о в а: дистракция, кость, остеоиндукция, остеокондукция, остеогенез, репаративная регенерация, факторы роста, остеобласты, хондроциты, неоангиогенез.

ЛИТЕРАТУРА [REFERENCES]

  1. Илизаров Г.А. Основные принципы чрескостного компрессионного и дистракционного остеосинтеза. Ортопедия, травматология и протезирование. 1971; 11: 7–15 [Ilizarov G.A. Basic principles of transosseous compression and distraction osteosynthesis. Ortopediya, travmatologiya i protezirovanie. 1971; 11: 7-15 (in Russian)].

2. Ilizarov G.A. The tension-stress effect on the genesis and growth of tissues. Part I: the influence of stability of fixation and soft-tissue preservation. Clin. Orthop. Relat. Res. 1989; 238: 249–81.

3. Ilizarov G.A.  The tension-stress effect on the genesis and growth of tissues. Part II. The influence of the rate and frequency of distraction. Clin. Orthop. Relat. Res. 1989; 239: 263–85.

4. Ilizarov G.A.  The transosseous osteosynthesis. Theoretical and clinical aspects of the regeneration and growth of tissue. New York: Springer; 1992.

5. Омельяненко Н.П., Миронов С.П., Денисов-Никольский Ю.И., Матвейчук И.В., Карпов И.Н.Репаративная костная регенерация. В кн. Актуальные проблемы теоретической и клинической остеоартрологии. М.: ОАО «Типография «Новости»; 2005: 239–71 [Omelyanenko N.P., Mironov S.P.,Denisov-Nikolskiy Yu.I., Matveichuk I.V., Karpov I.NReparative bone regeneration. In: Current issues of theoretical and clinical osteoarthrology. Moscow: OAO “Tipografiya «Novosti»”; 2005: 239-71 (in Russian)].

6. Лаврищева Г.И., Штин В.П. Особенности репаративных процессов при дистракционном остеосинтезе. В кн.: Труды III Всесоюзного съезда травматологов-ортопедов. М.: ЦИТО; 1976: 13–15 [Lavrishcheva G.I., Shtin V.P. Peculiarities of reparative processes in distraction osteosynthesis. In: Proc. 3rd All-Russ. Cong. of Trauma and Orthop. Surg. Moscow: CITO; 1976: 13-15 (in Russian)].

7. Kojimoto H., Yasui N., Goto T., Matsuda S., Shimomura Y.  Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteum. J. Bone Joint Surg. 1988; 70B: 543–9.

8. Aronson J., Good B., Stewart C.M., Harrison B., Harp J.  Preliminary studies of mineralization during distraction osteogenesis. Clin. Orthop. Relat. Res. 1990; 250: 43–9.

9. Choi I.H., Ahn J.H., Chung C.Y., Cho T.J.  Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J. Orthop. Res. 2000; 18: 698–705.

10. Aronson J. The biology of distraction osteogenesis. In: Maiocchi A.B., Aronson J., eds. Operative principles of Ilizarov. Fracture treatment, nonunion, osteomyelitis, lengthening, deformity correction. Baltimore: Williams and Wilkins; 1991: 42–52.

11. Aronson J. Experimental and clinical experience with distraction osteogenesis. Cleft. Palate Craniofac. J. 1994; 131: 473–81.

12. Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin. Orthop.Relat. Res. 1994; 301: 124–31.

13. Aronson J., Harp J.H. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis. Clin. Orthop. Relat. Res. 1994; 301: 73–9.

14. Delloye C., Delefortrie G., Coutelier L., Vincent A.  Bone regenerate formation in cortical bone during distraction lengthening. An experimental study. Clin. Orthop. Relat. Res. 1990; 250: 34–42.

15. Ganey T.M., Klotch D.W., Sasse J., Ogden J.A., Garcia T. Basement membrane of blood vessels during distraction osteogenesis. Clin. Orthop. Relat. Res. 1994; 301: 132–8.

16. Schenk R.K., Gachter A. Histology of distraction osteogenesis. In: Brighton C.T., Friedlaender G.E., Lane J.M., eds. Bone formation and repair. Illinois: AAOS; 1994: 387–94.

17. Shearer J.R., Roach H.I., Parsons S.W.  Histology of a lengthened human tibia. J. Bone Joint Surg. 1992; 74B: 39–44.

18. Vauhkonen M., Peltonen J., Karaharju E., Aalto K., Alitalo I.  Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner. 1990; 10 (3): 171–81.

19. Yasui N., Sato M., Ochi T., Kimura T., Kawahata H., Kitamura Y., Nomura S. Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. 1997; 79B: 824–30.

20. Li G.,  Virdi A.S., Ashhurst D.E., Simpson A.H., Triffitt J.T. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell. Biol. Int. 2000; 24: 25–33.

21. Лаврищева Г.И., Михайлова Л.Н. Репаративная регенерация кости. В кн.: Структурные основы адаптации и компенсации нарушенных функций: Руководство АМН СССР. М.: Медицина; 1987: 154–85 [Lavrishcheva G.I., Mikhailova L.N. Reparative bone regeneration. In: Structural principles of adaptation and compensation of the disturbed functions: Manual of the USSR AMSc. Moscow: Meditsina; 1987: 154-85 (in Russian)].

22. Aronson J., Shen X.C., Gao G.G., Miller F., Quattlebaum T., Skinner R.A. et al. Sustained proliferation accompanies distraction osteogenesis in the rat. J. Orthop. Res. 1997; 15: 563–9.

23. Cho T.J.Kim J.A.Chung C.Y.Yoo W.J.Gerstenfeld L.C.Einhorn T.A.Choi I.H. Expression and role of interleukin-6 in distraction osteogenesis. Calcif. Tissue Int. 2007; 80 (3): 192–200.

24. Cho T.J., Choi I.H., Chung C.Y., Park S.S., Park Y.K.  Temporal and spatial expression of bone morphogenetic protein-2 and -4 mRNA in distraction osteogenesis and fracture healing. J. Korean Orthop. Assoc. 1998; 33: 595–605.

25. Cho T.J., Choi I.H., Chung C.Y., Yoo W.J., Sung H.Y. Expression of vasculoendothelial growth factor in distraction osteogenesis of rat tibia. J. Korean Orthop. Res. 2001; 4: 114–20.

26. Choi I.H., Shim J.S., Seong S.C., Lee M.C., Song K.Y., Park S.C., Chung C.Y. Effect of the distraction rate on the activity of the osteoblast lineage in distraction osteogenesis of rat’s tibia. Bull. Hosp. Jt Surg. 1997; 56: 34–40.

27. Li G., Simpson A.H., Kenwright J., Triffitt J.T. Assessment of cell proliferation in regenerating bone during distraction osteogenesis at different distraction rates. J. Orthop. Res. 1997; 15: 765–72.

28. Choi I.H., Chung C.Y., Cho T-J., Yoo W. Angiogenesis and mineralization during distraction osteogenesis. J. Korean. Med. Sci. 2002; 17: 435–47.

29. Омельяненко Н.П., Илизаров Г.А., Стецула В.И. Регенерация костной ткани. В кн.: Шапошников Ю.Г., ред. Травматологии и ортопедия: Руководство для врачей. т. 1. М.: Медицина; 1997: 393–481 [Omel’yanenko N.P., Ilizarov G.A., Stetsula V.I. Bone tissue regeneration. In:  Shaposhnikov Yu.G., ed.Traumatology and orthopaedics: Manual for physicians. V. 1. Moscow: Meditsina; 1997: 393-481 (in Russian)].

30. Danis A. Mechanism of bone lengthening by the Ilizarov technique. Bull. Mem. Acad. R. Med. Belg. 2001; 156 (1–2): 107–12.

31. Carter D.R., Beaupre G.S., Giori N.J., Helms J.A. Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 1998; 355: S41–55.

32. Aronson J., Harrison B.H., Stewart C.L., Harp J.H. Jr.  The histology of distraction osteogenesis using different external fixators. Clin. Orthop. Relat. Res. 1989; 241: 106–16.

33. Aldegheri R., Volino C., Zambito A., Tessari G., Trivella G. Use of ultrasound to monitor limb lengthening by callotasis. J. Pediatr. Orthop. 1993; 2: 22–7.

34. Villars F., Guillotin B., Amedee T., Dutoya S., Bordenave L., Bareille R., Amedee J. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol. Cell Physiol. 2002; 282: C775–C785.

35. Reilly T.M., Selders R., Luchetti W., Brighton C.T. Similarities in the phenotypic expression of pericytes and bone cells. Clin. Orthop. Relat. Res. 1998; 346: 95–103.

36. Trueta J.  The role of the vessels in osteogenesis. J. Bone Joint Surg. 1963; 45B: 402–18.

37. Русаков А.В. Патологическая анатомия болезней костной системы. М.: Медгиз; 1959.

38. Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275: 964–7.

39. Isner J.M., Kalka C., Kawamoto A., Asahara T. Bone marrow as a source of  endothelial cells for natural and iatrogenic vascular repair. Ann. N Y Acad. Sci. 2001; 953: 75–84.

40. Jarka D.E., Nicholas R.W., Aronson J. Effect of methotrexate on distraction osteogenesis. Clin. Orthop. Relat. Res. 1998; 354: 209–15.

41. Sato M., Ochi T., Nakase T., Hirota S., Kitamura Y., Nomura S., Yasui N. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J, Bone Miner. Res 2000; 14: 1084–95.

42. Li G., Berven S., Simpson H., Triffitt J.T. Expression of BMP-4 mRNA during distraction osteogenesis in rabbits. Acta Orthop. Scand. 1998; 69: 420–5.

43. Rauch F., Lauzier D., Croteau S., Travers R., Glorieux F.H., Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone. 2000; 27: 453–9.

44. Farhadieh R.D., Dickinson R., Yu Y., Gianoutsos M.P., Walsh W.R.  The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible. J. Craniofac. Surg. 1999; 10: 80–6.

45. Farhadieh R.D., Gianoutsos M.P., Dickinson R., Walsh W.R. Effect of distraction rate on biomechanical, mineralization, and histologic properties of an  ovine mandible model. Plast. Reconstr. Surg. 2000; 105: 889–95.

46. Liu Z., Luyten F.P., Lammens J., Dequeker J. Molecular signaling in bone fracture healing and distraction osteogenesis. Histol. Histopathol. 1999; 14 (2): 587–95.

47. Steinbrech D.S., Mehrara B.J., Rowe N.M., Dudziak M.E., Luchs J.S., Saadeh P.B. et al.  Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast. Reconstr. Surg. 2000; 105: 2028–38.

48. Tavakoli K., Yu Y., Shahidi S., Bonar F., Walsh W.R., Poole M.D.  Expression of  growth factors in the mandibular distraction zone: a sheep study. Br. J. Plast. Surg. 1999; 52: 434–9.

49. Cillo J.E. Jr, Gassner R., Koepsel R.R., Buckley M.J. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2000; 90 (2): 147–54.

50. Meyer U., Meyer T., Wiesmann H.P., Stratmann U., Kruse-Losler B., Maas H., Joos U. The effect of magnitude and frequency of interfrag-mentary strain on the tissue response to distraction osteogenesis. J. Oral. Maxillofac. Surg. 1999; 57: 1331–9.

51. Meyer U., Wiesmann H.P., Meyer T., Schulze-Osthoff D., Jasche J., Kruse-Losler B., Joos U.  Microstructural investigations of strain-related collagen mineralization. Br. J. Oral. Maxillofac. Surg. 2001; 39: 381–9.

52. Richards M., Kozloff K.M., Goulet J.A., Goldstein S.A. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. J. Bone Miner. Res. 2000; 15: 982–9.

53. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 1995; 92: 5510–4.

54. Fan L., Li J., Yu Z., Dang X., Wang K. The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. Biomed. Res Int. 2014; 2014: 239356.

55. Adams J.M., Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science. 1998; 281 (5381): 1322–6.

Сведения об авторах: Миронов С.П. — академик РАН и РАМН, директор ЦИТО им. Н.Н. Приорова;Омельяненко Н.П. — доктор мед. наук, проф., зав. отделением соединительной ткани с группой клинической генетики; Карпов И.Н. — канд. мед. наук, старший науч. сотр. отделения лучевой диагностики; Иванов А.В. — канд. мед. наук, вед. науч. сотр. отделения детской ортопедии;Хлыстова А.В. — врач травматолог-ортопед детской поликлиники.

Для контактов: Карпов Игорь Николаевич. 127299, Москва, ул. Приорова, д. 10, ЦИТО. Тел.:+7 (916) 611–97–58. E-mail: igorkarpoff@mail.ru.